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THE TOPOLOGICAL STRUCTURE 
OF 3-PSEUDOMANIFOLDS 

BY 

AMOS ALTSHULER AND ULRICH BREHM 

ABSTRACq" 

A 3-pseudomanifold (briefly 3-pro) is a finite connected simplicial 3-complex in 
which the link of every vertex is a closed 2-manifold. Such a link is singular if it 
is not a sphere. It is proved that for a preassigned list 5~ of closed 2-manifolds 
(other than spheres), there is a 3-pm in which the list of singular links is precisely 
2, iff the number of the non-orientable members in 2 with odd genus is even. 
Close relationship is found between 3-pros and 3-manifolds with boundary. This 
yields a simple proof for the 2-dimensional case 0f Pontrjagin-Thom's theorem 
(i.e., necessary and sufficient condition for a 2-manifold to bound a 3-manifold). 
The concept of a 3-pro is generalized to higher dimensions. 

I. Introduction 

A 3-pseudomanifo ld  (briefly: 3-pm), as defined in [1], is a finite connec ted  

simplicial 3-complex X, in which every 2-simplex (triangle) belongs to  precisely 

two 3-simplices, the link of every 1-simplex (edge) is a circuit, and the link of 

every vertex is a connec ted  2-manifold wi thout  boundary .  

The  main  result in [1] is that  every finite set E of 2-manifolds is pm-realizable.  

That  is, for every  finite set E of (topologically distinct) 2-manifolds (connected,  

wi thout  boundary) ,  there exists a 3-pm ~r such that for every vertex x E ~ ,  

link (x, ~ )  is h o m e o m o r p h i c  to some S E E, and for  every S E ~ there  is some 

vertex x E ~r such that link(x, ~r) is h o m e o m o r p h i c  to S. In  this case we also say 

that ~ pm-realizes E. However ,  very little control  was exercized in [1] on the 

multiplicity of each S E E in ~ ,  that  is, on  the n u m b e r  of  vertices x in ~ such 

that  link (x, ~ )  is h o m e o m o r p h i c  to S. Genera l ly  speaking,  this multiplicity could 

not  be arbitrarily preassigned. Here  we show that,  at the cost of adding a 

2-sphere to  the set E, the multiplicity of each S E E o ther  than the 2-sphere can 

be arbitrarily predetermined.  

Note  that  if E does not  contain  a sphere,  and ~ pm-realizes E, then the link of  
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no vertex in ~ is a sphere. Topologically, however, there is no reason to restrict 

the use of spheres as links of vertices, since if ~c' is a subdivision of Y/', then ~ '  

has the same topological (though not combinatorial) structure as ~, and 

therefore also pro-realizes Y., except for the fact that the link of every "new" 

vertex in ~ '  is a 2-sphere (see Lemma 7 below). 

Here we show (Theorem 1), that if there is no restriction on the use of 

2-spheres, then not only the set ~, but also the multiplicity of each 2-manifold in 
other than 2-sphere can be arbitrarily (up to a certain natural condition) 

preassigned. 

Moreover, we show (Theorem 2) that in this setting the concept of a 3-pm is 

closely related to the concept of a compact 3-manifold with boundary, and the 

problem of pm-realizing a set ~ is equivalent to the problem of the structure of 

the boundary of a 3-manifold. Thus our method yields a new and intrinsic 

approach to this last problem (Corollary 3), as well as a better understanding of 

the topological structure of a 3-pm (Theorem 8). 

We would have liked to generalize our results to higher dimensions. However, 

since our investigations base heavily on the classification of 2-manifolds, and no 

such simple classification is known for higher dimensional manifolds, we do not 

see how this desired generalization can be carried out. Nevertheless, in Section 4 

we generalize (in two ways) the concept of a 3-pm to any dimension n, and 
investigate some basic properties of those n-pros, in the hope that this will 

motivate further research in this direction. 

2. Notation and main results 

Let X be a simplicial n-complex. The elements of Y/" are its f a c e s ,  and the 

0-elements of ~ are also called vert ices .  For every A E X define st(A, ~) ,  the 

s t a r  of A in X, to be the set {B E X : A  CB}; define ast(A, ~) ,  the a n t i s t a r  of A 
in X, to be the complex {B E ~ r : A  N B  = 0 } ;  define cls t(A,~) to be the 

smallest subcomplex of X which contains st(A, ~) ,  and define link(A, ~) ,  the 

l i n k  of A in X, to be clst(A, ~/') f3 ast(A, X). All the manifolds mentioned in this 

paper are compact and (unless otherwise specified) connected, and all the 

2-manifolds are without boundary. 

As is well known, every abstract finite simplicial n-complex can be ree- 

tilinearly realized in the (2n + 1)-dimensional Euclidean space R 2"+1. Thus we 
may m and usually do - -  deal with our complexes, which are all simplieial, as 

abstract complexes. An n-simplex whose vertices are a0, a l , "  ", a, is denoted by 

a o a 1 "  • a . .  If A1 = a o a ~ . .  • a~ and A2 = a~+~.., a, are disjoint simplexes, we 
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denote by A~.A2 the simplex a o " ' a , .  In particular, if A = a 0 . . . a ,  is an 

n-simplex and x is a vertex not in A, x • A is the (n + 1)-simplex xao. ."  a, (if 

dim A = - 1, that is, A is empty, then x • A = x). For a simplicial complex qg and 

a vertex x not in c~, we define x • qg = {x • A : A E ~ }, and call it the cone on qg 

with apex x. 
We shall consider a triangulation of a manifold as the manifold itself. Thus we 

say "link(x, ~r) is a manifold" while, strictly speaking, link(x, ~ )  is a triangula- 

tion of a manifold, and ]Jink (x, ~)1 is the manifold. Moreover,  we assume all the 

manifolds mentioned in ~ this paper to be endowed with some triangulation so 

that they form finite simplicial complexes in which the link of every interior 

vertex is a sphere (for dimensions 2 and 3 this is always the case (see [7]), while 

for dimensions n _-> 5 there are triangulations which lack this property (see [4])). 

In particular, the boundary OM of a 3-dimensional manifold M is assumed to be 

endowed with the triangulation induced by that of M. 

DEFINITION 1. Let ~ be a 3-pm, and let x be a vertex in ~.  x is singular (in 

~ )  if the 2-manifold link(x, 2{) is not a sphere. (Thus a 3-pm with no singular 

vertices is simply a 3-manifold without boundary.) A singular link (star) in ~( is 

the link (star) of a singular vertex. The multiplicity in ~ of a 2-manifold S is the 

number of vertices in ~ w h o s e  links are homeomorphic  to S. A simplex A in ~ is 

regular if none of its vertices is singular in 5~. 

DEFINITION 2. Let X = {S~ ' , . . . ,  S~'} be a finite set of topologically distinct 

2-manifolds S, (1 =< i _-< n) none of which is a sphere, such that to each S~ is 

adjoined a positive integer a~, the multiplicity of S, (If m = 1, we often omit the 

superscript a,.) X is said to be strongly pro-realizable (briefly: spin-realizable) if 

there exists a 3-pm X such that the singular links in X are precisely 

(homeomorphic to) S t , "  ", S., and each S~ appears in ~f with multiplicity ot~. In 

this case we also say that X spm-realizes g. We say that X bounds if there is a 

3-manifold M whose boundary aM is composed of precisely at  2-manifolds 

(each homeomorphic  to) $1, a2 2-manifolds $ 2 , "  ", a ,  2-manifolds S,, and an 

arbitrary number (possibly zero) of 2-spheres. 

The main results to be proved here are as follows: 

THEOREM 1. A set X as in Definition 2 is spm-realizable if and only if  
X{a~ :S~ E X & S ~  is non-orientable and of  odd genus} is even. 

THEOREM 2. A set ~, as in Definition 2 is spin-realizable if and only if ~, 
bounds. 

As an immediate result of those two theorems we obtain: 
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COROLLARY 3. A (possibly disconnected) 2-manifold N without boundary is 

(homeomorphic to) the boundary of some 3-manifold iff the number of connected 
components of N which are non-orientable and of odd genus, is even. 

This corollary is just a particular case (n = 2) of the general theorem by 

Pontrjagin and Thorn (see [6, pages 17, 18]) which states that an n-dimensional 

(ditterentiable) manifold M is the boundary of an (n + 1)-manifold iff all the 

Stiefel-Whitney numbers of M are zero. We could of course reverse the order, 

and obtain Theorem 1 as a result of Thom's theorem and Theorem 2 above. 

However, we prefer to prove Theorem 1 independently, since our proof is 

elementary, and thus obtain a new and simple proof for the 2-dimensional case 

of the Pontrjagin-Thom theorem. 

3. Proofs 

PROOF OF THEOREM 1. For every simplicial complex 2L we denote by f i ( ~ )  

the number of / - faces  of ~t. For every 2-manifold S let X(s) denote the Euler 

characteristic of S, and let q(s), the connectivity of S, be defined by q(s)= 
2 - X(s). Thus q(s) is the genus of S if S is not orientable, and twice the genus of 

S if S is orientable. For a 3-pm Yf, we have the following analog of the 

Euler-Poincare relation: 

LEMMA 4. For every 3-pm 5( we have E3=o(-1)if~(~)=½Exq(link(x,~)),  

where the right sum ranges over all the vertices x of ~r. 

PROOF. See [1, lemma 3]. 

From Lemma 4 it follows that the number of singular vertices in a 3-pm ~, 

whose links are non-orientable and of odd genus, is even. Thus the "only if" part 

of Theorem 1 is proved. 

In the proof of the " if"  part of Theorem 1, we will often use the following 

construction: Starting with two disjoint 3-pm's Y/'~, ~2, we will identify some 

3-simplex A~ E K~ with some 3-simplex A2 E ~2 (we may also start with two 

3-pm's K~, ~2 whose intersection is a unique 3-simplex A and its faces), and 

remove the simplex A = A~ = A z (but none of its proper faces). The resulting 

complex ~ = ~ t_J ~2\{A} is said to be obtained from ~rt and ~2 by assembling 

them at A = A~ = A2, and its structure is given in the following lemma, which is a 

particular case of [I, lemma 7]: 

LErV~A 5. Let K~, ~r2 be 3-pin's whose intersection is a unique 3-simplex A 

and its faces. Then the complex K obtained from ~ and ~(2 by assembling them at 

A is a 3-pro, and 
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(1) for every vertex x ~ Yf~\{A} we have l ink(x, X )  = link(x, Yf~) (i = 1, 2); 

(2) for every vertex x E A we have q(link(x, Y{)) = q(link(x, Yf~)) 

+ q(link(x, Yf2)) and l ink(x, 5() is orientable iff both link(x, Yfl) and l ink(x, Yf2) 

are orientable. 

For  a set E as in Defini t ion 2, let E, = { S ~ ' , - . . ,  S,~}, ~2 = {Sj~,', "" ", S~,'} be 

similar sets such that {S,, • •. ,  S, } = {Sil, • • ", Sik } U {Sjl, • • ", Sj, }, and such that the 

multiplicity of each S, in E is the sum of its multiplicities in E1 and E2. Then  we 

say that El, E2 form a partition of ~ into two parts, and we write E = E, tO E~. The  

part i t ion of E into any finite number  of parts  is defined similarly. 

In o rder  to  construct  the 3-pm 9{ spm-realizing the set E of T h e o r e m  1, we first 

part i t ion E into sets El," • ", E,,, each of which is of the form dealt  with in L e m m a  

6. L e m m a  6 will enable  us to  spm-real ize each of these E~ by some 3-pm, and the 

desired Y{ will be ob ta ined  by assembling toge ther  all those 3-pm's. 

LEMMA 6. Let S, St, $2 be 2-manifolds such that q (S) is positive and even and 

q(SO, q(S2) are odd. That is, S is a 2-manifold which is either orientable and not a 

2-sphere, or non-orientable with even genus, S~, $2 are non-orientable 2-manifolds 

with odd genus. I f  "Z is either {S}, or {S~, $2} or {S~}, then E is spin-realizable. 

PROOF. Case ( a )  E = {S}, S is orientable. 

S can be e m b e d d e d  in R 3 and such an embedding ,  which we deno t e  again by 

S, separates  R 3 into two componen t s  - -  one  of them bounded  - -  with c o m m o n  

boundary  S. D e n o t e  by S the bounded  componen t .  Then  S is a 3-manifold,  and 

aS = S. We  endow S with some tr iangulat ion so that it be  a simplicial complex.  

Le t  x be  a point  (vertex) not  in S. We claim that  x - S U S is a 3-pm in which the 

link of every  ver tex  o ther  than x is a 2-sphere,  and the link of x is S. Thus  

x • S U S spm-realizes Y. = {S}. 

Indeed ,  clearly link(x, x • S U S)  = S. If y ~  x is a ver tex in x • S U S, then y is 

e i ther  an inner  ver tex in S, in which case l ink(y,  x - S  U S ) =  link (y, S ) =  2- 

sphere,  or y E S, in which case link(y, x • S U S)  = link(y, S)  U x • l ink(y, S), and 

this is the union of two discs - -  disjoint except  for  their  c o m m o n  boundary  which 

is a 1-sphere - -  and there fore  it is a 2-sphere.  

Case (b ) ~ = {S}, S is non-orientable with even genus 2p 

Let  B1 be a solid Klein bott le ,  i.e., a 3-manifold whose boundary  OBl is a Klein 

bott le.  (For  the exis tence of such B, see, e.g., [2, page 133].) Let  x be a ver tex not  

in B,.  Then ,  as in Case (a), K, = x • 813, U B~ is a 3-pm in which the only singular 

ver tex is x, and link(x, ~ t )  = OBl. Thus,  in case p = 1, 5~ pro-realizes 2 .  If p > 1, 
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let B 2 , . " , B  e be solid Klein bottles (or solid toruses) which are mutually 

disjoint, except that for each 1 _<-i =<p, OB, shares with OB,+~ a common 

2-simplex A~+~ (and its faces), such that A2,..-, Ap are mutually disjoint. We 

claim that ~ = U~"=l (x • aB, U B , ) \  U,"=z (x • A, ) is a 3-pm which spin-realizes E. 

Namely, ~ is a 3-pm in which the only singular vertex is x, and link(x, ~/') is 

homeomorphic to S. 

Indeed, for each 1 _-< j < p, let ~ = U'~=I (x • aB, U B,)  \ UJ~ =2 (x • A,). We 

already know that ~1 is a 3-pm in which the only singular vertex is x, and 

link(x, 9{i) is a Klein bottle. We proceed by induction on i. Assume that for some 

1 < i  < p  ~ is indeed a 3-pm in which the only singular vertex is x, and 

l i n k ( x , ~ )  is a non-orientable 2-manifold with genus 2i. Define ~ * =  

x • aB~+~ U B~+~. Then 5(*, like ~ ,  is a 3-pro in which the only singular vertex is x, 

and l i n k ( x , ~ * ) =  OB~+~. The complex ~+~ is then obtained by assembling 

and ~ *  at their common 3-simplex x • A,+~, and it therefore follows from Lemma 

5 that ~+,  is a 3-pm with a unique singular vertex, namely x, and link(x, ~+1) is a 

non-orientable 2-manifold of genus 2(i + 1). Since ~ = Kp, we are done. 

Case (c)  "Z, = {S,, S2} 

S~,$2 are non-orientable 2-manifolds, q ( S , ) =  2m +1,  q (S2 )=  2n + 1 

(m,  n > 0). 

Let P be a projective plane, and let x, y be two distinct vertices not in P. The 

complex K, = x • P U y • P, i.e., the suspension of P, is easily seen to be a 3-pm 

with precisely two singular vertices, namely x and y, and link(x,g{~)= 

l i n k ( y , ~ l ) = P .  Now let B I , . . . , B m ,  B ~ , . . . , B "  be solid Klein bottles (or 

toruses) which are mutually disjoint and disjoint to ~r,  except that P n OB~ is a 

2-simplex A~ (and its faces), P n 0B ~ is a 2-simplex A~ (and its faces) and for each 

1 <-_ i < m, 1 ~ j  < n, aB, n aB,+~ is a 2-simplex A,+~ (and its faces), and aB~n 

OB~+~ is a 2-simplex A'i+l (and its faces). Define 

)( ) u U ( y ' a B ; u B ; )  \ O ( x ' A , ) U O ( y ' A ' , ) .  
j = l  i = l  t=1 

Then, as in Case (b), it follows easily from Lemma 5 that K is a 3-pm with 

precisely two singular vertices, namely x and y, link(x, ~ )  is a non-orientable 

2-manifold of genus 2m + 1 and l i nk (y ,~ )  is a non-orientable 2-manifold of 

genus 2n + 1. Thus ~ spm-realizes E. 
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Case (d)  "Z = {S~} 

Proceed as in Case (c), just replacing $2 by S,. 

In order to complete the proof of Theorem 1 we need one more lemma: 

LEMMA 7. I f  5/  is a 3-pro and 5/ '  is a subdivision o f  5/, then 5/ '  is a 3-pro and 

has the same  singularities as 5/, i.e., for every vertex x E K ' ,  i f  x is not a vertex in 5/ 

then link(x, 5/') is a sphere, and  if  x is a vertex in 5/ then link(x, 5/') is 

homeomorphic  to link(x, 5/). 

PROOF. See [5, lemma 1.14]. 

Now let E be a set as in Definition 2, satisfying the condition stated in 

Theorem 1. Then E can clearly be partitioned into E , , . . . ,  Era, where each Ei 

(1 -< i _-< m) is of one of the types dealt with in Lemma 6, and therefore can be 

spm-realized by some 5/', 

Define 5/, = Y{~ and inductively define ~ (1 < i =< m) as follows: Using 

Lemma 7, we may assume that ~, , and K', contain regular 3-simplices A, and A= 

respectively (otherwise replace ~ _ ,  and 5/', by their second barycentric subdivi- 

sions). We first identify A~ with A2, and then let ~ be the complex obtained by 

assembling ~ _ ,  and 5/'~ at A, = A 2. By Lemma 5 and the induction hypothesis it is 

easily seen that 5/, is a 3-pm which spm-realizes the set E~ LI • • • t.) E,. Thus the 

complex ~ = 5/,. is the desired 3-pm which spm-realizes Y, and the proof of 

Theorem 1 is therefore complete. []  

PROOF OF THEOREM 2. Let Y, = { S ~ ' , . . . ,  S]"} be as in Definition 2. First 

assume that E bounds, i.e., there is a 3-manifold M whose boundary ,~M is 

composed of a, copies S,.,, • •., S~ .... of S,, a :  copies $2.,, • • -, $2.o 2 of $2, • •., an 

copies S, . , , . .  ",Sn.a. of S,, and an arbitrary number, ao say, of 2-spheres 

So,,, • • ", So.~o. Constructing cones on the connected components of 0M such that 

the apexes of the cones are different from each other and none of them is in M, 

and adding those cones to M, yields the desired 3-pm 5{ which spm-realizes E. 

More precisely, let A = { x l , ' . . ,  x~':0-< i _<- n} be a set of ELo a~ distinct points 

none of which is in M. Define 5 / =  M U ( U~=,( U~'~ x~. s~,, )). Then ~ / i s  easily 

seen to be a 3-pm, its set of singular vertices is A\{x'o: 1 <-j <= a0}, and for each 

1 < i _-< n and 1 =< j =< a,, link (X~, 5/) = S,.j. Thus 5/spin-realizes E. 

Next assume that E is spin-realizable and 5/spm-realizes E. We may assume 

that all the singular stars in 5 / a r e  mutually disjoint, since otherwise (see Lemma 

7) we can replace 5 / b y  its second barycentric subdivision. Now the removal from 

2{ of all the singular stars in 5 /c lear ly  yields a 3-manifold M such that 9M is 
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composed of precisely ai copies of $i for each 1 =< i _--< n (and no spheres at all). 

Thus X bounds. [] 
The proof of Theorem 2 yields also the following reformulation of Theorem 2: 

THEOREM 8. Every 3-manifold M yields a 3-pm by coning all the connected 

components of OM, and every 3-pro ~ yields a 3-manifold by removing [rom the 

second barycentric subdivision of X all the singular stars. 

4. Higher dimensional pseudomanifolds 

The concept of a 3-pro can be generalized into higher dimensions in two 

natural ways: 

DEFINITION 9 I. An n-pseudomani[oid (briefly: n-pm; n > 2) o[ type 1 is a 

connected simplicial n-complex in which the link of every vertex is a connected 

( n -  0-manifold without boundary. 

DEFINmON 9 II. Inductively: A 1-pm o[ type 2 is a 1-sphere. An n-pm of type 

2 (n > 2) is a connected simplicial n-complex in which the link of every vertex is 

an (n -1 ) -pm of type 2. 

Clearly, every n-pm of type 1 is also an n-pm of type 2, and both definitions 

coincide for n = 2, 3. The suspension of a 3-pro (which is not a 3-manifold) is a 

4-pm of type 2, but not of type 1. Similarly, for every n > 4 there are n-pms of 

type 2 which are not of type 1. Recall that all the manifolds mentioned here are 

assumed to possess a triangulation in which the link of every interior vertex is a 

sphere. 
At first glance it seems that for n = 3, Definition 91 does not coincide with the 

definition of a 3-pm as given in [1, page 213] and in the beginning of the present 

article, since for a 3-pm it was required also that the link of every /-simplex 

(i = 1, 2) be a (2 - / ) -sphere .  However, the next theorem and its corollary show 

that this is not the case. 

THEOREM 10. Let d~ be a connected simplicial n-complex. Fix i, 0 <= i < n - 1. 

I f  for every i-simplex A~ in d~ link (A~, d~) is an ( n - i - 1)-manifold, then for every 

i < j < n, the link of every j-simplex in d~ is an (n - j  - 1)-sphere. 

PROOF. Let i < j < n, and let A s ~ d~ be a j-simplex. Let A~ be some i-face of 

Aj. Then Aj = A~. Aj_~_1, where Aj_,_1 is the ( j -  i -  1)-face of A, disjoint to A, 

Now link(Aj, d~)= {A E d~: A-At E d L  AnA~ =Q3 = { A E  ~ : A . A , .  As_~_, E d/, 

A n A, • Aj-,-i = 125} = link(Aj_,_l, link(A, d~)) = (n - j  - 1)-sphere, since 

link(A. M) is an (n - i - 1)-manifold. [] 
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COROLLARY 11. In an n-pm of type 1, the link of every i-simplex, 0 < i < n, is 

an (n - i - 1)-sphere. 

Thus, the requirements (i) and (ii) in the definition of a 3-pro in [1, page 213] 

are superfluous. 

For an n-pm of type 2 it is of course not true that the link of every/-s implex,  

1 -< i < n, is a sphere, or even a manifold. However:  

THEOREM 12. In an n-pro o[ type 2, the link of every i-simplex, 1 <= i < n, is 

an (n - i - 1)-pro o[ type 2. 

PROOF. By induction on n. The assertion holds trivially for n = 2, 3. Assume 

the theorem has been proved for n => 3, and let X be an (n + 1)-pm of type 2. Let 

A~ be an/-s implex in X, 1 <= i <= n, and let x be a vertex in A~. Write A~ = x • A~-I. 

Then link (Ai, K)  = {A E ~ : A. Ai E K, A f3 A~ = ~ = {A E link (x, ~ ) :  

A M A,-1 = O, A- A,-I E link(x, 5()} = link(A,_~, link(x, 5~f)) = ~ ' .  Now, if i = 1 

then ~ '  is an n-pro of type 2 by Definition 9 II, and if i > 1 then ~ '  is an 

(n - ( i  - 1 ) -  1)-pm of type 2 by the induction hypothesis, since link(x, ~ )  is an 

n-pm of type 2 by Definition 9 II, and (n - (i - 1) - 1) = (n + 1) - i - 1. []  

As in the 3-dimensional case, we call a vertex in an n-pm (of either type) 

singular if its link is not a sphere. Singular links an stars are defined similarly. 

Lemma 7, modified for n-pm's of types 1 and 2, still holds. (See again [5, 

lemma 1.14.) Together  with Corollary 11 it implies: 

THEOREM 13. If X is an n-pm of type 1 which is not a manifold, and Sg' is the 

second barycentric subdivision of K, then the removal of all the singular stars (of 

vertices) in ~ '  yields an n-mani[old with boundary. 

PROOF. Let x be a singular vertex in X '  and let y be a vertex in link(x, ~ ' ) .  

We have to show that link(y, ast (x, ~ ' ) )  is an (n - 1)-ball. Since link(y, Yf') is an 

( n -  1)-sphere (by the modified Lemma 7), it is sufficient to show that 

link(xy, K ' )  is an (n - 2)-sphere. Now, by Corollary 11, link(xy, X ' )  is indeed an 

(n - 2)-sphere. [] 

Clearly, Theorem 13 does not hold for n-pms of type 2, and it might be 

interesting to investigate the topological object obtained by removing from the 

second barycentric subdivision of an n-pm of type 2, the stars of all the singular 

vertices. 

The converse of Theorem 12 is also true. That  is, if M is an n-manifold with 

boundary, and X is obtained from M by coning all the components  of OM on 

distinct apexes, then X is an n-pm of type 1. Other  simple ways of constructing 

n-pms are given in the next theorem. 
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THEOREM 14. (a) I[ K,, 5K2 are n-pms o~ type i (i = 1, 2), then the connected 

sum of Y{~ and Y{2 is again an n-pro of type i. 

(b) I[ ~ is an n-pm of type i (i = 1, 2), then any subdivision of ~ yields an n-pro 

of type i. 

(c) If M is a connected ( n -  1)-manifold without boundary and Y{ is the 

suspension of M on two vertices x, y, then 3{ is an n-pro of type 1. 

I f  M is not a sphere, then the only singular vertices in ~7{ are x and y, and 

link(x, Y{) = link(y, Y{) = M. 

(d) If ~C~ is an (n - 1)-pro of type 2 and Y{ is a suspension of Y{~, then ~{ is an 

n-pro of type 2. 

PROOF. (a) We use here the term "connected sum" as a natural modification 

of that term as used in [8, page 46]. Namely, we assume ~ , ,  Y{2 to be disjoint, we 

then identify some n-simplex A in ~,  with some n-simplex in ~: ,  and define the 

connected sum of Y(,, YC2 to be 5( = ~ ,  U Y{2\{A}. 

Let x be a vertex in A. It is sufficient to show that link(x, YQ is a connected 

(n - 1)-manifold in the case i = 1, and an (n - 1)-pm of type 2 in the case i = 2. 

The connectedness of link (x, Y{) is easily shown as in the proof of Lemma 7 in 

[1]. We proceed by induction on n. Write A = x  .A'. Then l i n k ( x , ~ ) =  

link(x, Y(~) U link(x, YC2)\{A'}, and this, by the induction hypothesis, is indeed an 

(n - 1)-manifold in the case i = 1, and an (n - 1)-pm of type 2 in the case i = 2. 

(b) This is just the modification of Lemma 7 mentioned above. 

(c) Obvious. 

(d) Let Y{ be the suspension of ~ ,  on the two vertices x, y, and let z E vert Y{. 

We have to show that X ' =  link(z, YC) is an (n - 1)-pm of type 2. We do this by 

induction on n. If z = x or z = y, then clearly Y{'= ~ ,  and we are done. If 

z E vert Yd,, then Y{' is easily seen to be the suspension of link(z, ~ , )  on x and y. 

Since, by Theorem 12, link (z, Y{,) is an ( n - 2 ) - p m  of type 2, the induction 

hypothesis yields that 9{' is indeed an (n - 1)-pm of type 2. [] 

REMARKS. (A) The proof of theorem 15 in [1] is incomplete, since only nine 

of the eleven existing 2-neighborly 5-polytopes were considered there. However,  

the two missing cases show the same phenomena as the other nine cases, and 

therefore that Theorem 15 still ho lds .The  two missing lines in Table 5 there are 

as follows: 

10. 1, 2, 3, 0, 0, 4, 5, 0, 6, 0, 7, 8, 0, 0 {123, 178, 345, 456, 678}-- .  - -  

11. 1, 2, 0, 3, 4, 5, 0, 0, 6, 7, 8, 0 {123, 128, 345, 456, 567, 6 7 8 } / ~ / /  

(b) The existence of 3-pms with vertices having non-orientable 2-manifolds as 
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links, established both in [1] and in the present paper, shows that lemma 6 on 

page 163 of [5] is false. S.S. Cairns points out (private communication) that the 

statement in the proof that ~9~'m_,(~ ~0 1) is a free cyclic group is the source of the 

error. 
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